‹³Žö m¶•¨ŠwŒ¤‹†Žºn
‚“c@kŽi

m•¨—ŠwŒ¤‹†Žºn
A“c@‹B
m‰»ŠwŒ¤‹†Žºn
¬‹{@¬‹`
y‹³Žö m¶•¨ŠwŒ¤‹†Žºn
•½’ˁ@—Œb
m‰»ŠwŒ¤‹†Žºn
“n•Ó@•¶‘¾
uŽt

m•¨—ŠwŒ¤‹†Žºn

‰Á‰€@ŽŒÈ

‹qˆõ‹³Žö

m•¨—ŠwŒ¤‹†Žºn

Jun Kameoka
(Texas A&M University)

Œ¤‹†ŽÀK¶

m¶•¨ŠwŒ¤‹†Žºn

¬j —C‰î

”ñí‹Î•Žè

m¶•¨ŠwŒ¤‹†Žºn

¬‰– –¢˜Ð
¬j —C‰î
ꎓ¡ ŠG–ƒ

m•¨—ŠwŒ¤‹†Žºn

‘åX@—鉹

ŽÄú±@„

—é–؁@‹Ú“Þ

’JŒû@—¤

m‰»ŠwŒ¤‹†Žºn
‰¶“c@ŠóŽuŽq
ˆÀˆä@«–ž
‹àŽq@’m‹`
’†‘º@˜a•F

Ž––±ˆõ

m¶•¨ŠwŒ¤‹†Žºn
•½‰Í@‘½Œb
m•¨—ŠwŒ¤‹†Žºn

ˆÀ“c@“µ
m‰»ŠwŒ¤‹†Žºn

‰““c@”ü’q‘ã

 

uÀiŒ¤‹†Žºj‚ÌŠT—v
m¶•¨ŠwŒ¤‹†Žºn
@1960”N4ŒŽAiŠw‰Û’ö‚ÌŠJu‚ɍ‡‚킹‚Đݒu‚³‚ꂽ¶•¨Šw‹³Žº‚ª–{Œ¤‹†Žº‚Ì‹NŒ¹‚Å‚·B‚»‚ÌŒãA¶•¨Šw‹³Žº‚́A1998”N‚ɉð–UŠwuÀ‘æ‚PE¶•¨ŠwŒ¤‹†Žº‚ւƉü‘g‚³‚ê‚Ü‚µ‚½‚ªA2002”NAŽ©‘R‰ÈŠw‹³Žº‚ð\¬‚·‚鐶•¨ŠwŒ¤‹†Žº‚ւƍĉü‘g‚³‚êA¡“ú‚ÉŽŠ‚è‚Ü‚·B2022”NŒ»ÝAÝ—§‚©‚ç63”N–Ú‚Æ‚È‚è‚Ü‚·B
m•¨—ŠwŒ¤‹†Žºn

@–{Œ¤‹†Žº‚Ì‘Og‚Å‚ ‚镨—Šw‹³Žº‚́Aº˜a35”N4ŒŽAiŠw‰Û’ö‚ÌŠJÝ‚Æ‚Æ‚à‚É’a¶‚µA¶—ŠwuÀ‘æ1•¨—ŠwŒ¤‹†Žº(•½¬10`14”N)‚ðŒo‚āAŽ©‘R‰ÈŠw‹³ŽºE•¨—ŠwŒ¤‹†Žº‚É‚È‚è‚Ü‚µ‚½B

m‰»ŠwŒ¤‹†Žºn

@–{Œ¤‹†Žº‚́AiŠw‰Û’ö‚ªŠJÝ‚³‚ꂽ1960”N‚©‚牻ŠwŒ¤‹†Žº‚Æ‚µ‚NŽŸŠw¶‚ÉŠî‘b‰ÈŠw‚Æ‚µ‚Ẳ»Šw‚ð—L‹@‰»Šw‚╨—‰»Šw‚𒆐S‚É‹³ˆç‚µ‚Ä‚Ü‚¢‚è‚Ü‚µ‚½B1998”N‚©‚ç‚̐¶‰»ŠwuÀ‘æ1E‰»ŠwŒ¤‹†Žº‚ÌŽžŠú‚ðŒo‚Ä2002”N‚©‚玩‘R‰ÈŠw‹³ŽºE‰»ŠwŒ¤‹†Žº‚Æ‚µ‚ÄŒ»Ý‚ÉŽŠ‚Á‚Ä‚¨‚è‚Ü‚·B

ˆãŠw‰È‹³ˆç‚ɂ‚¢‚Ä
m¶•¨ŠwŒ¤‹†Žºn
@–{Œ¤‹†Žº‚͈ãŠw‚ðŠw‚Ô‚½‚ß‚ÌŠî‘b’mŽ¯‚ÆŠwK–@‚̏K“¾‚ð–Ú“I‚Æ‚µ‚ăR[ƒX¶–½Šî‘b‰ÈŠw‚̐¶•¨Šw•ª–ì‚ð’S“–‚µ‚Ä‚¢‚Ü‚·Bu‹`“à—e‚́A×–E‚̍\‘¢E‹@”\E‘BE•ª‰»Aˆâ“`Žq‚ƃ^ƒ“ƒpƒNŽ¿Aˆâ“`Œ»ÛAî•ñ“`’BA¶•¨‚̐i‰»‚Æ‘½—l«AŽå—v‚ÈŒ¤‹†Žj“™‚Å‚·BŽÀK‚ł́A×–EE‘gDEŠíŠ¯‚ÌŒ`‘Ô‚Æ‹@”\‚âŠî‘b“I‚Ȉâ“`Žq‰ðÍ“™‚ɂ‚¢‚Ä‘ÌŒ±“I‚ÉŠwK‚µ‚Ü‚·B
m•¨—ŠwŒ¤‹†Žºn

@ƒR[ƒXu¶–½Šî‘b‰ÈŠwv‚Ì•¨—Šw•ª–ì‚ð’S“–‚µ‚Ä‚¢‚Ü‚·B•¨—Šw‚͈ãŠw‚ւ̏€”õ‹³ˆç‚Æ‹³—{‹³ˆç‚Ì—¼•û‚Ì–ðŠ„‚ð‰Ê‚½‚µ‚½‚¢‚Æ”O‚¶‚Ä‚¢‚Ü‚·BŽóŒ±‚Å‚Ì•¨—”ñŽóŒ±ŽÒ‚ðl—¶‚µ‚½‹³ˆç‚ðs‚Á‚Ä‚¢‚Ü‚·Bu‹`•ª–ì‚́u—ÍŠwvu“dŽ¥‹CŠwvu„‘́vu’e«‘́vu”g“®vu—¬‘́vuŒ»‘㕨—Šwv‚Å‚·B

m‰»ŠwŒ¤‹†Žºn

@–{Œ¤‹†Žº‚̓R[ƒX¶–½Šî‘b‰ÈŠw‚Ì‚¤‚¿A‰»Šw•ª–ì‚̍u‹`E‰‰KEŽÀK‚ð’S“–‚µ‚Ä‚¢‚Ü‚·BˆãŠw‚ðŠw‚Ô‚½‚߂̏€”õ‹³ˆçE‹³—{‹³ˆç‚Æ‚µ‚Ä‚Ì—L‹@‰»Šw‚𕨗‰»Šw“I‚ÈŽ‹–ì‚É‚½‚Á‚āAŒ´ŽqE•ªŽq‚̍\‘¢‚©‚ço”­‚µ‚ж–½Œ»Û‚Ì’†S‚Å‚ ‚鐶‘Ì•ªŽq‚̍\‘¢‚â‹@”\‚Ü‚Å‚ð‹³‚¦‚Ä‚¢‚Ü‚·B

‘åŠw‰@‹³ˆçEŒ¤‹†‚ɂ‚¢‚Ä
m¶•¨ŠwŒ¤‹†Žºn
@‰º‹L‚ÌŒ¤‹†ƒe[ƒ}‚ÉŠÖ‚·‚鋤“¯Œ¤‹†‚È‚Ç‚ð’Ê‚¶‚Ä‘¼‘åŠw‚ðŠÜ‚Þ‘åŠw‰@¶E‘²‹ÆŒ¤‹†¶‚Ì‹³ˆç‚ÉŠÖ‚í‚Á‚Ä‚¢‚Ü‚·B
£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
‹³ˆç’S“–
u‹`‰È–Ú–¼Ì‚ƑΏۊw”N
m¶•¨ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg×–E‚̐¶•¨ŠwiˆãŠw‰È1”Nj

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒgŽ©‘R‰ÈŠw“ü–剉Ki¶•¨ŒnjiˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~@ŠCŽY¶•¨‚Ì—ÕŠCŽÀKviˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~@¶–½‰ÈŠwŒ¤‹†‚ւ̏µ‘ҁviˆãŠw‰È1”Nj

ƒR[ƒXŒ¤‹†Žº”z‘®iˆãŠw‰È3”Nj

¶•¨ŠwiŠÅŒìŠw‰È1”Nj

m•¨—ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒgu¶–½‚Ì•¨—ŠwviˆãŠw‰È1”Nj

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒguŽ©‘R‰ÈŠw“ü–剉Ki•¨—ŒnjviˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~ ¶–½‰ÈŠwƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ““ü–åviˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~ —ÊŽq—ÍŠw“ü–åviˆãŠw‰È1”Nj

ƒR[ƒX—Տ°‰uŠwEEBMIEƒ†ƒjƒbƒguƒRƒ“ƒsƒ…[ƒ^‰‰KƒAƒhƒoƒ“ƒXviˆãŠw‰È1”Nj

ƒR[ƒXŒ¤‹†Žº”z‘®iˆãŠw‰È3”Nj

•¨—ŠwiŠÅŒìŠw‰È‚P”Nj

m‰»ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg¶‘Ì•ªŽq‚̉»ŠwiˆãŠw‰È1”Nj

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒgŽ©‘R‰ÈŠw“ü–剉Ki‰»ŠwŒnjiˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~@—L‹@‡¬‰»Šw“ü–åviˆãŠw‰È1”Nj

ƒR[ƒXŒ¤‹†Žº”z‘®iˆãŠw‰È‚R”Nj

‰»ŠwiŠÅŒìŠw‰È‚P”Nj

ŽÀK‰È–Ú–¼Ì‚ƑΏۊw”N
m¶•¨ŠwŒ¤‹†Žºn
ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg¶–½Šî‘b‰ÈŠwŽÀKi¶•¨ŒnjiˆãŠw‰È1”Nj
¶•¨ŠwŽÀŒ±iŠÅŒìŠw‰È1”Nj
m•¨—ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg¶–½Šî‘b‰ÈŠwŽÀKi•¨—ŒnjiˆãŠw‰È1”Nj
•¨—ŠwŽÀŒ±iŠÅŒìŠw‰È1”Nj

m‰»ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg¶–½Šî‘b‰ÈŠwŽÀKi‰»ŠwŒnjiˆãŠw‰È1”Nj
‰»ŠwŽÀŒ±iŠÅŒìŠw‰È‚P”Nj

£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
Žå‚ÈŒ¤‹†ƒe[ƒ}
ŽÀŒ±Œ¤‹†
m¶•¨ŠwŒ¤‹†Žºn

ƒ|ƒŠƒ†ƒrƒLƒ`ƒ“½‚Ì’è—Ê‚ÉŠî‚­ƒvƒƒeƒIƒXƒ^ƒV•]‰¿Œn‚ÌŒŸ“¢

d‹à‘®Œn‰»Šw•¨Ž¿‚É‚æ‚é×–E“Ő«‚Ì”­Œ»‹@\iûü“cj

^Šj×–E‚É’~Ï‚·‚éˆÙíƒ^ƒ“ƒpƒNŽ¿‚ÉŠÖ‚·‚錤‹†iûü“cj

ŽíŽqA•¨‚̉ԕ²Œ`¬‚ÉŠÖ‚·‚錤‹†i—YŒ´×–E‚ª×–E“à×–E‰»‚·‚é‹@\ji•½’ˁj

‰Ô•²Œ`¬ˆÙí‚ðŽ¦‚·•ÏˆÙ‘Ì‚É‚¨‚¯‚é‰Ô•²“àƒIƒ‹ƒKƒlƒ‰‚ÌŒ`‘Ô‰ðÍi•½’ˁj

m•¨—ŠwŒ¤‹†Žºn
(A“c)
E ƒ‰ƒ“ƒ_ƒ€ƒ|[ƒ‰ƒXƒtƒHƒgƒjƒbƒNƒ‚ƒfƒ‹‚É‚æ‚é’¹‚̍\‘¢F‚̉ð–¾
E ƒAƒ_ƒvƒeƒBƒuƒtƒHƒmƒjƒbƒNƒŒƒ“ƒY‚ð—p‚¢‚½’´‰¹”g‚É‚æ‚é”ñNP“Iƒsƒ“ƒ|ƒCƒ“ƒg”]“àŽhŒƒ‚ÌŒ¤‹†
E ƒtƒHƒgƒjƒbƒNŒ‹»‚É‚¨‚¯‚éŒõ‚ÆŠiŽqU“®‚Ì‘ŠŒÝì—p‚É‚æ‚éŒõ‘•
E ƒ‰ƒ“ƒ_ƒ€ƒŒ[ƒU[‚É‚¨‚¯‚é’á臒l”­Uƒ‚[ƒh‚̉ðÍ
E ƒ|ƒŠƒXƒ`ƒŒƒ“•ïŠÜƒxƒVƒNƒ‹‚Ì•ª—ô–@‘¥‚Ì—˜_
i‰Á‰€j
‘Š“]ˆÚE—ÕŠEŒ»ÛE‘ŠŒÝì—p‚µ‚Ä‚¢‚鑽‘ÌŒnEƒRƒ“ƒsƒ…[ƒ^ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“
ikameokaj
E •ªŽqˆóü“d‹É‚ð—p‚¢‚½¶‘Ì•ªŽqƒZƒ“ƒT[‚ÌŠJ”­
E ’Pˆê•ªŽqŒŸ’m‚Ì‚ª‚ñŒ¤‹†‚ւ̉ž—p
E ƒ\ƒtƒgƒAƒNƒ`ƒ…ƒG[ƒ^[‚ð—p‚¢‚½ŽèpŠí‹ï‚ÌŠJ”­
m‰»ŠwŒ¤‹†Žºn

i¬‹{j
—ÓŒõ«‹à‘®ö‘Ì‚Ì•ªŽq”z—ñ‚Æ”­Œõ§Œä
π-‹¤–𐧌ä‚É‚æ‚é—L‹@•ªŽq‚̌ő̔­Œõ
‘JˆÚ‹à‘®ö‘Ì‚Ì“®“I‹““®‚ÉŠÖ‚·‚錤‹†
‘JˆÚ‹à‘®ö‘Ì‚É‚¨‚¯‚éˆÊ’u‘I‘ð“I‹à‘®|…‘f‘ŠŒÝì—p

i“n•Ój
¶•¨Šˆ«—L‹@‰»‡•¨‚̍‡¬‚¨‚æ‚э\‘¢Œˆ’è
¶•¨Šˆ«“V‘R•¨‚̐¶‡¬Œo˜H‚̉ð–¾

£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
Žå‚ȋƐÑ
m¶•¨ŠwŒ¤‹†Žºn

qûü“cr

  1. Takada K, Nasu H, Hibi N, Tsukada Y, Ohkawa K, Fujimuro M, Sawada H, Yokosawa H. Immunoassay for the quantification of intracellular multiubiquitin chains. Eur J Biochem 1995; 233: 42-7.
  2. Takada K, Hibi N, Tsukada Y, Shibasaki T, Ohkawa K. Ability of ubiquitin radioimmunoassay to discriminate between monoubiquitin and multi-ubiquitin chains. Biochimi Biophys Acta 1996; 1290: 282-8.
  3. Takada K, Nasu H, Hibi N, Tsukada Y, Shibasaki T, Fujise K, Fujimuro M, Sawada H, Yokosawa H, Ohkawa K. Serum concentrations of free ubiquitin and multi-ubiquitin chains. Clin Chem 1997; 43: 1188-95.
  4. Takada K, Hirakawa T, Yokosawa H, Okawa Y, Taguchi H, Ohkawa K. Isolation of ubiquitin-E2 (ubiquitin-conjugating enzyme) complexes from erythroleukemia cells using immunoaffinity techniques. Biochem J 2001; 356: 199-206.
  5. Shimada Y, Fukuda T, Aoki K, Yukawa T, Iwamuro S, Ohkawa K, Takada K. A protocol for immunoaffinity separation of the accumulated ubiquitin-protein conjugates solubilized with sodium dodecyl sulfate. Anal Biochem 2008; 377: 77-82.
  6. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010; 465: 346-9.

q•½’ˁr

  1. Hiratsuka R, Terasaka O. Pollen tube reuses intracellular components of nucellar cells undergoing programmed cell death in Pinus densiflora. Protoplasma 2011; 248: 339-51.
  2. •½’Ë—ŒbAŽ›âŽ¡DƒXƒM‰Ô•²‚É‚¨‚¯‚éƒyƒNƒ`ƒ“•ª‰ðy‘f(Cry j 2)‚̉ԕ²ŠÇL’·‚ɉʂ½‚·–ðŠ„@“ú–{‰Ô•²Šw‰ï‰ïŽ@58(2):51-9i2012j
  3. •½’Ë—ŒbAŽ›âŽ¡D—‡ŽqA•¨‰Ô•²—±‚É‚¨‚¯‚é‘O—t‘̍זE‚̃vƒ‰ƒOƒ‰ƒ€×–EŽ€‡UDŒ´Œ`Ž¿˜A—‚Ì•sŒ`¬‚ƍזE•Ç”ìŒú‚ÌŠÖ—^D“ú–{‰Ô•²Šw‰ï‰ïŽ@59(1):3-10i2013j
  4. ¬‰–ŠC•½E•½’Ë—ŒbDƒgƒŠƒIƒŒƒCƒ“Ž_ƒ\ƒ‹ƒrƒ^ƒ““ûÜiƒpƒ‹ƒJƒbƒgj‚ð—p‚¢‚½ƒXƒM‰Ô•²Œ`¬—}§‹Zp‚ÌŠm—§DƒAƒŒƒ‹ƒM[‚̗Տ°@36(13)@P67-9(2016)
  5. Kanno T, Adachi Y, Ohashi-Doi K, Matsuhara H, Hiratsuka R, Ishibashi K, Yamanaka D, Ohno N. Latent 1,3-ƒÀ-D-glucan acts as an adjuvant for allergen-specific IgE production induced by Japanese cedar pollen exposure. Allergol Int 2021; 70(1) 105-13.
  6. Hiratsuka R, Terasaka O. Dynamics of Cell Membrane and Cell Wall Development during Generative Cell Engulfment by the Pollen Tube Cell in Liriope muscari. Cytologia 2021; 86:225-33.
  7. •½’Ë—ŒbC·ˆêLŽqD‰Ô•²‚Ì‘–¸“dŽqŒ°”÷‹¾ŠÏŽ@‚É‚¨‚¯‚éƒiƒmƒX[ƒc–@‚̉ž—pD“ú–{‰Ô•²Šw‰ï‰ïŽ 2022;67i‚QjF51|5D
m•¨—ŠwŒ¤‹†Žºn

i’˜‘j

1D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̐³‰ð‚Ɖðà(‘æ39‰ñ). “Œ‹ž. ŠÛ‘P. (2013)

2D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̐³‰ð‚Ɖðà(‘æ40‰ñ). “Œ‹ž. ŠÛ‘P. (2014)

3D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̐³‰ð‚Ɖðà(‘æ41‰ñ). “Œ‹ž. ŠÛ‘P. (2015)

4D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̐³‰ð‚Ɖðà(‘æ42‰ñ). “Œ‹ž. ŠÛ‘P. (2016)

5D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̐³‰ð‚Ɖðà(‘æ43‰ñ). “Œ‹ž. ŠÛ‘P. (2017)

6D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̐³‰ð‚Ɖðà(‘æ44‰ñ). “Œ‹ž. ŠÛ‘P. (2018)

7D‰Ä–Ú—Y•½DA“c ‹B’˜DŠî‘b•¨—ŠwƒVƒŠ[ƒY‚P‚SDŒvŽZ•¨—IID“Œ‹žD’©‘q‘“X, (2002)

i˜_•¶j

qA“cr
1. Tsuyoshi Ueta and Yuu Miyagawa, Local Gauge Finite Element Method for Electron Waves in Magnetic Fields, Phys. Rev. E, Vol. 86, (2012) 026707, DOI:10.1103/PhysRevE.86.026707.
2. T. Ueta and T. Hioki, Gor'kov Theory with Exact Green Function in Magnetic Fields, Journal of Superconductivity and Novel Magnetism, Vol. 26, Issue 5, (2013) pp.1921-1926, DOI:10.1007/s10948-012-1872-y.
3. Garuda Fujii, Hayato Watanabe, Takayuki Yamada, Tsuyoshi Ueta and Mamoru Mizuno, Level set based topology optimization for optical cloaks, Appl. Phys. Lett. 102 (2013) 251106, doi: 10.1063/1.4812471.
4. Tsuyoshi Ueta, The dynamic Casimir effect within a vibrating metal photonic crystal, Applied Physics A, , Applied Physics A, vol.116, Issue 3 (2014), pp.863-871, DOI 10.1007/s00339-014-8469-1.
5. Tsuyoshi Ueta, Garuda Fujii, Gen Morimoto, Kiyoshi Miyamoto, Akinori Kosaku, Takeo Kuriyama and Takahiko Hariyama, Numerical study on the structural color of blue birds by a disordered porous photonic crystal model, Europhysics Lett., vol. 107, no. 3 (2014) 34004.
6. Garuda Fujii, Tsuyoshi Ueta, Mamoru Mizuno and Masayuki Nakamura, Topology optimized multiple-disk resonators obtained using level set expression incorporating surface effects, Optics Express, vol. 23, Issue 9, (2015) pp.11312-11326.
7. Garuda Fujii and Tsuyoshi Ueta, Topology-optimized carpet cloaks based on a level-set boundary expression, Phys. Rev. E, vol. 94 (2016) 043301.
8. ’†“c_“ñAA“c ‹BA‰H¶M‹`A”–؏GKAŽOX‹³—YA–î‰iŸ•F, ˆÝ‘S“EŒã‹ó’°ƒpƒEƒ`ÄŒšE•¬–呤ˆÝØœŒãÄŒš‚ðŽæ‚芪‚­Œ»ó‚ÆŠO‰È¶—ŠwE¶‘Ì—ÍŠw‚©‚ç‚ÌŒŸØ, Žèp, vol. 71, no. 8 (2017) pp.1129-1139.
9. Tsuyoshi Ueta, Wave functions and phase shifts of amplified modes within a vibrating metallic photonic crystal, Procedia Engineering, vol. 216C, (2018) pp.152-167.
10. Tsuyoshi Ueta, Resonance with Virtual Bound States and Amplification within a Vibrating 1D Photonic Crystal, Proceedings of the 12th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics - Metamaterials 2018, IEEE Xplore Conference ID: 43757X, 978-1-5386-4702-8/18/$31.00, pp.407-409. DOI: 10.1109/ Meta Materials. 2018.8534077.
11. Hibiki Itoga, Ryota Morikawa, Tsuyoshi Ueta, Takeshi Miyakawa, Yuno Natsume and Masako Takasu, Effect of particles with repulsive interactions enclosed in both rigid spherical shells and flexible fluid vesicles studied by Monte Carlo simulation, Phys. Rev. E. vol. 99, (2019) 042418.
12. T. Ueta: gAmplification of Light within a One-dimensional Photonic Crystal with Harmonically Oscillating Dielectric Constant of Each Layer,h 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), New York City, NY, 2020, pp. 015-017, doi: 10.1109/Metamaterials49557.2020.9285110.
13. Tsuyoshi Ueta, Garuda Fujii and Gen Morimoto:gFull-model Finite-element Analysis for Structural Color of Tarsiger cyanurusfs Feather Barbsh, Forma, Vol. 35 (No. 1), (2020) pp. 21-26, doi:10.5047/forma.2020.005.
14. A“c ‹B:gŒo“ªŠW“_óŽU—‘Ì”z—ñƒŒƒ“ƒY‚Ì“ªŠW“à‰¹êÅ“K‰»h ŒvŽZ”—HŠw˜_•¶W 21, (2021), 11-211218, pp.7-12.

q‰Á‰€r
1. Y.Ozeki, K.Kasono. Nonequilibrium relaxation analysis for first-order phase transitions. Physica A.2003;321:271-279

2. Ono, K.Kasono. Investigation on Liquid Crystal Phases of Polarized Rod-like Molecules by NumericalSimulations. Ferroelectrics. 2005;315:197-203

qKameokar
1. Po-Jung Huang, Chao-Kai Chou, Chun-Te Chen, Hirohito Yamaguchi, Jian Qu, Anastasia Muliana, Mien-Chie Hung and Jun Kameoka, Pneumatically Actuated Soft Micromold Device for Fabricating Collagen and Matrigel Microparticles, SOFT ROBOTICS (2017) DOI: 10.1089/soro.2016.0073.

2. Jun Kameoka, Onder Dincel, Tsuyoshi Ueta, Acoustic Driven Microbubble Motor Device, Sensors & Actuators: A. Physical, 295, (2019) pp.343-347, https://doi.org/10.1016/j.sna.2019.05.013

3. Zheyuan Chen, Christopher Wright, Onder Dincel, Ting-Yen Chi and Jun Kameoka, A Low-Cost Paper Glucose Sensor with Molecularly Imprinted Polyaniline Electrode, Sensors 2020, 20, 1098, doi:10.3390/s20041098.

m‰»ŠwŒ¤‹†Žºn
i¬‹{¬‹`j
1. Komiya, N.; Okada, M.; Fukumoto, K.; Jomori, D.; Naota, T. Highly Phosphorescent Crystals of Vaulted trans-Bis(salicylaldiminato)platinum(II) Complexes, J. Am. Chem. Soc. 2011, 133, 6493-6496.

2. Komiya, N.; Muraoka, T.; Iida, M.; Miyanaga, M.; Takahashi, K.; Naota, T. Ultrasound-Induced Emission Enhancement Based on Structure-Dependent Homo- and Heterochiral Aggregations of Chiral Binuclear Platinum Complexes, J. Am. Chem. Soc. 2011, 133, 16054-16061.

3. Komiya, N.; Okada, M.; Fukumoto, K.; Kaneta, K.; Yoshida, A.; Naota, T. Vaulted trans-Bis(salicylaldiminato)platinum(II) Crystals: Heat-Resistant, Chromatically Sensitive Platforms for Solid-State Phosphorescent at Ambient Temperature, Chem. Eur. J. 2013, 19, 4798-4811.

4. Komiya, N.; Itami, N.; Naota, T. Solid-State Phosphorescent of trans-Bis(salicylaldiminato)Pt(II) Complexes Bearing Long Alkyl Chains: Morphology Control towards Intense Emission, Chem. Eur. J. 2013, 19, 9497-9505.

5. Naito, M.; Souda, H.; Koori, H.; Komiya, N.; Naota, T. Binuclear trans-Bis(β-iminoaryloxy)palladium(II) Complexes Doubly Linked with Pentamethylene Spacers: Structure-dependent Flapping Motion and Heterochiral Association Behavior of the Clothespin-shaped Molecules, Chem. Eur. J. 2014, 20, 6991-7000.

6. Komiya, N.; Okada, M.; Le, N. H.-T.; Kawamorita, S.; Naota, T. Linker-Dependent Chromogenic Control of the Emission of Polymethylene-Vaulted trans-Bis(salicylaldiminato)platinumi‡UjComplexes, J. Lumin. 2015, 161, 363-367.

7. Komiya, N.; Okada, M.; Inoue, R.; Kawamorita, S.; Naota, T. Variations in the Emission of Polymethylene-Vaulted trans-Bis(salicylaldiminato)platinum(II) Complexes Incorporating Methoxy Functionalities with Linkage Length and Substitution Position, Polyhedron 2015, 98, 75-83.

8. Naito, M.; Inoue, R.; Iida, M.; Kuwajima, Y.; Kawamorita, S.; Komiya, N.; Naota, T. Control of Metal Array Based on Heterometallic Masquerade in Heterochiral Aggregation of Chiral Clothespin-shaped Complexes, Chem. Eur. J. 2015, 21, 12927-12939.

9. Komiya, N.; Nakajima, T.; Hotta, M.; Maeda, T.; Matsuoka, T.; Kawamorita, S.; Naota, T. Kinetic Studies of the Chirality Inversion of Salicylaldiminato Ruthenium Using Racemic η6-p-Cymene Complexes as a Mechanistic Probe, Eur. J. Inorg. Chem. 2016, 3148-3156..

10. Anzai, K.; Kawamorita, S.; Komiya, N.; Naota, T. Convenient Spectroscopic Method for Quantitative Analysis of Trace Hydrochloric Acid in Chlorinated Organic Solvents Using 2-(1-Adamantylimino)methyl-1H-pyrrole as a Robust Indicator, Chem. Lett. 2017, 46, 672-675.

11. Komiya, N.; Yoshida, A.; Zhang, D.; Inoue, R.; Kawamorita, S.; Naota, T. Fluorescent Crystals of Zwitterionic Imidazolium Pyridinolates: A Rational Molecular Design for Intense Solid-State Emission Based on the Twisting Control of Proemissive N-Aryl Imidazolium Platforms, Eur. J. Org. Chem. 2017, 5044-5054.

12. Maeda, T.; Kuwajima, Y.; Akita, T.; Imai, Y.; Komiya, N; Uchida, Y.; Naota, T. Helicity Control of Supramolecular Gel Fiber Consisting of Achiral Ni(II) Complex in Chiral Nematic Solvent, Chem. Eur. J. 2018, 24, 12546-12554.

13. Komiya, N.; Hosokawa, T.; Adachi, J.; Inoue, R.; Kawamorita, S.; Naota, T. Regiospecific Remote Pt-H Interactions in Oligomethylene-Vaulted (N^C^N)-Pincer Pt(II) Complexes, Eur. J. Inorg. Chem. 2018, 4771-4778.

14. Ngoc Ha-Thu, Le.; Inoue, R.; Kawamorita, S.; Komiya, N.; Naota, T. Phosphorescent Molecules That Resist Concentration Quenching in the Solution State: Concentration-Driven Emission Enhancement of Vaulted trans-Bis[2-(iminomethyl)imidazolato]platinum(Ⅱ) Complexes, Inorg. Chem. 2019, 58, 9076-9084.

15. Komiya, N.; Ikeshita, M.; Tosaki, K.; Sato, A.; Itami, N.; Naota, T. Catalytic Enantioselective Rotation of Watermill-Shaped Dinuclear Pd Complexes, Eur. J. Inorg. Chem. 2021, 1929-1940.

16. Adachi, J.; Naito M.; Sugiura, S.; Lem N. H.-T.; Nishimura, S.; Huang, S.; Suzuki, S.; Kawamorita, S,; Komiya, N.; Hill, J. P.; Ariga, K.; Naota, T.; Mori, T. Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology, Bull. Chem. Soc. Jpn. 2022, 95, 889-897.

i“n•Ó•¶‘¾j
1. Kamiyama, A.; Nakajima, M.; Han, L.; Wada, K.; Mizutani, M.; Tabuchi, Y.; Kojima-Yuasa, A.; Matsui-Yuasa, I.; Suzuki, H.; Fukuyama, K.; Watanabe, B.; Hiratake, J. Phosphonate-based irreversible inhibitors of human ƒÁ-glutamyl transpeptidase (GGT). GGsTop is a non-toxic and highly selective inhibitor with critical electrostatic interaction with an active-site residue Lys562 for enhanced inhibitory activity. Bioorg. Med. Chem. 2016, 24, 5340-5352.

2. Watanabe, B.; Yamamoto, S.; Yokoi, T.; Sugiura, A.; Horoiwa, S.; Aoki, T.; Miyagawa, H.; Nakagawa, Y. Brassinolide-like activity of castasterone analogs with varied side chains against rice lamina inclination. Bioorg. Med. Chem. 2017, 25, 4566-4578.

3. Tokunaga, T.; Watanabe, B.; Sato, S.; Kawamoto, J.; Kurihara, T. Synthesis and functional assessment of a novel fatty acid probe, ƒÖ-ethynyl eicosapentaenoic acid analog, to analyze the in vivo behavior of eicosapentaenoic acid. Bioconjug. Chem. 2017, 28, 2077-2085.

4. Watanabe, B.; Kirikae, H.; Koeduka, T.; Takeuchi, Y.; Asai, T.; Naito, Y.; Tokuoka, H.; Horoiwa, S.; Nakagawa, Y.; Shimizu, B.; Mizutani, M.; Hiratake, J. Synthesis and inhibitory activity of mechanism-based 4-coumaroyl-CoA ligase inhibitors. Bioorg. Med. Chem. 2018; 26: 2466-2474.

5. Oshikiri, H; Watanabe, B.; Yamamoto, H.; Yazaki, K.; Takanashi, K. Two BAHD acyltransferases catalyze the last step in the shikonin/alkannin biosynthetic pathway. Plant Physiol. 2020, 184, 753-761.

6. Maruoka, N.; Watanabe, B.; Ando, D.; Miyashita, M.; Kurihara, T.; Hokazono, H. Effects of a pyroglutamyl pentapeptide isolated from fermented barley extract on atopic dermatitis-like skin lesions in hairless mouse. Biosci. Biotechnol. Biochem. 2020, 84, 1696-1705.

7. Akiyama, R.; Watanabe, B.; Nakayasu, M.; Lee, H. J.; Kato, J.; Umemoto, N.; Muranaka, T.; Saito, K.; Sugimoto, Y.; Mizutani, M. The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nat. Commun. 2021, 12, 1300.

8. Watanabe, B.; Makino, K.; Mizutani, M.; Takaya, H. Synthesis and structural confirmation of calibagenin and saxosterol. Tetrahedron, 2021, 91, 132194.

9. Watanabe, B.; Nishitani, S.; Koeduka, T. Synthesis of deuterium-labeled cinnamic acids: Understanding the volatile benzenoid pathway in the flowers of the Japanese loquat Eriobotrya japonica. J. Label. Compd. Radiopharm. 2021, 64, 403-416.

10. Ishida, T.; Watanabe, B.; Mashiguchi, K.; Yamaguchi, S. Synthesis and structure-activity relationship of 16,17-modified gibberellin derivatives. Phytochemistry Lett. 2022, 49, 162-166.

£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
Žå‚È‹£‘ˆ“IŒ¤‹†”ï
m¶•¨ŠwŒ¤‹†Žºn

‰ÈŠwŒ¤‹†”ï•â•‹à

1. •½¬16`18”N“x Šî”ÕŒ¤‹†(B)uŒ´Žn“IˆÛŠÇ‘©A•¨‚Ì”z‹ô‘̂̐i‰»‚Æ‘½—l«v(Œ¤‹†•ª’SŽÒE•½’Ë)

2. •½¬19`21”N“x ’§í“I–G‰èŒ¤‹†u—‡ŽqA•¨‰Ô•²ŠÇ‚Ì‘½—l«‚ƍזEŠÔƒRƒ~ƒ…ƒjƒP[ƒVƒ‡ƒ“v(Œ¤‹†‘ã•\ŽÒE•½’Ë)

3. •½¬22`24”N“x Šî”ÕŒ¤‹†(C)u^Šj¶•¨‚ª—L‚·‚éˆÙíƒ^ƒ“ƒpƒNŽ¿Ž¯•Ê‹@\‚ÉŠî‚­—LŠQ•¨Ž¿•]‰¿Œn‚ÌŠm—§viŒ¤‹†‘ã•\ŽÒE‚“cj

4. •½¬22`24”N“x Šî”ÕŒ¤‹†(A)uƒ}ƒEƒX‚ðƒ‚ƒfƒ‹‚Æ‚µ‚½¸_Ž¾Š³‚ւ̃Aƒvƒ[ƒ`viŒ¤‹†•ª’SŽÒE‚“cj

5. •½¬25`27”N“x Šî”ÕŒ¤‹†(B)u—{ˆçs“®‚Ì•ªŽqŠî”Ձ`Usp46•ÏˆÙƒ}ƒEƒX‚ðŠˆ—p‚µ‚ā`viŒ¤‹†•ª’SŽÒE‚“cj

6. •½¬25`28”N“x Šî”ÕŒ¤‹†(C)u—LŠQd‹à‘®‚̓Ő«”­Œ»‚ÉŠÖ—^‚·‚é×–E“àƒ^ƒ“ƒpƒN‹ÃW‘Ì‚ÌŒ¤‹†viŒ¤‹†‘ã•\ŽÒE‚“cj

7. •½¬25`27”N“x Šî”ÕŒ¤‹†(C)uˆÀ‘S«‚̍‚‚¢ŠE–ÊŠˆ«Ü‚ð—p‚¢‚½ƒXƒM‰Ô•²Œ`¬—}§‹Zp‚ÌŠm—§v(Œ¤‹†•ª’SŽÒE•½’Ë)

8. •½¬28`30”N“x Šî”ÕŒ¤‹†(C)uH“¹Šà‚É‚¨‚¯‚éSUMO“ÁˆÙ“IƒvƒƒeƒA[ƒ[‚̈Ӌ`‚Æ”­Œ»—}§‚É‚æ‚éRŠàì—p‚̉ðÍviŒ¤‹†•ª’SŽÒE‚“cj

9.—ߘaŒ³`3”N“x Šî”ÕŒ¤‹†(C)uƒ|ƒŠƒ†ƒrƒLƒ`ƒ“½ŠeŒ^‚Ì’è—Ê‚ÉŠî‚­‰Á—Ž¾Š³‚Ì•a‘Ô‰ðÍv(Œ¤‹†‘ã•\ŽÒE‚“cj

m•¨—ŠwŒ¤‹†Žºn
1. •½¬23`25”N“x‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)iˆê”ʁjju—LŒÀ—v‘f–@‚É‚æ‚éƒ|[ƒ‰ƒXEƒRƒƒCƒhƒtƒHƒgƒjƒbƒN\‘¢‚Ì“Á«‰ðÍviŒ¤‹†‘ã•\ŽÒEA“cj

2. •½¬30`—ߘa4”N“x‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)iˆê”ʁjjuƒAƒ_ƒvƒeƒBƒuEƒtƒHƒmƒjƒbƒNEƒƒ^\‘¢—p‚¢‚½’´‰¹”gŽû‘©ƒVƒXƒeƒ€‚ÌŠî‘bÝŒvviŒ¤‹†‘ã•\ŽÒEA“cj

3. •½¬31`—ߘa5”N“x‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(A)iˆê”ʁjju‹ÇŠ‹¤UŒ»Û‚ðŽæ‚è“ü‚ꂽ’e«”g“®E“dŽ¥ƒƒ^ƒ}ƒeƒŠƒAƒ‹\‘¢‚Ì‘n¬viŒ¤‹†•ª’SŽÒEA“cj

4. —ߘa4`—ߘa6”N“x‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)iˆê”ʁjju“KŽž“IÅ“_‰Â•ÏŒo“ªŠW“_óŽU—‘̉¹‹¿ƒŒƒ“ƒY‚ÌŠî‘bÝŒvviŒ¤‹†‘ã•\ŽÒEA“cj
m‰»ŠwŒ¤‹†Žºn

1. •½¬21`23”N“x ‰ÈŠwŒ¤‹†”ï•â•‹àiŽáŽèŒ¤‹†(B)ju‹à‘®‚Ì‹óŠÔ”z—ñ§Œä‚ðŽwŒü‚µ‚½’´‰¹”g‰ž“š«ƒQƒ‹‰»”½‰žviŒ¤‹†‘ã•\ŽÒE¬‹{j

2. •½¬24`26”N“x ‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)juŒÅ‘̏ó‘Ô‚Å‹­‚¢—ÓŒõ«”­Œõ‚ðŽ¦‚·‚RŽŸŒ³“nŠÂŒ^”’‹àö‘Ì‚Ì‘n¬viŒ¤‹†‘ã•\ŽÒE¬‹{j

3.•½¬25”N“x@“Æ—§s­–@l‰ÈŠw‹ZpU‹»‹@\@Œ¤‹†¬‰ÊÅ“K“WŠJŽx‰‡ƒvƒƒOƒ‰ƒ€iA-STEPj’Tõƒ^ƒCƒv@u”§‚́uŽáX‚µ‚³v‚𑝐i‚·‚éV‹K¬•ªŽq‰»‡•¨‚Ì‘n»viŒ¤‹†‘ã•\ŽÒE“n•Ój

4. •½¬25`26”N“x@‰ÈŠwŒ¤‹†”ï•â•‹àiŽáŽèŒ¤‹†(B)j@u—L‹@‰»Šw‚ðŠî”Õ‚Æ‚µ‚½ŒÃ×‹Û–ŒŽ‰Ž¿•ªŽq‚̐¶‡¬‚¨‚æ‚Ñ“®‘Ԃ̉𖾁viŒ¤‹†‘ã•\ŽÒE“n•Ój

5. •½¬27`28”N“x@‰ÈŠwŒ¤‹†”ï•â•‹àiŽáŽèŒ¤‹†(B)j@uγ-ƒOƒ‹ƒ^ƒ~ƒ‹ƒgƒ‰ƒ“ƒXƒyƒvƒ`ƒ_[ƒ[“ÁˆÙ“I•ªŽqƒvƒ[ƒu‚̍‡¬‚Æ‚ª‚ñ–Ɖu—Ö@‚ւ̉ž—pviŒ¤‹†‘ã•\ŽÒE“n•Ój

6.•½¬27`29”N“x ‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)ju—ÓŒõ«”’‹àö‘Ì‚É‚¨‚¯‚é”zˆÊ•½–Ê‚Ì‚„|π‹¤–ð•Ï‰»‚ÉŠî‚­”­Œõ§ŒäviŒ¤‹†‘ã•\ŽÒE¬‹{j

7. —ߘaŒ³`4”N“x ‰ÈŠwŒ¤‹†”ï•â•‹à (Šî”ÕŒ¤‹†(C))uŽŸ¢‘ã”­Œõ‘fŽq‚Ì‚½‚߂̌ő̐F—ÓŒõ«‚ð—L‚·‚é“nŠÂŒ^”’‹àö‘Ì‚ÌŠJ”­viŒ¤‹†‘ã•\ŽÒE¬‹{j

8. •½¬31`—ߘa4”N“x@‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(B)iˆê”ʁjj@uA•¨uškŠo(Šö”­«‰»‡•¨‚ð”FŽ¯‚µ¶‘̃VƒOƒiƒ‹‚Ö‚Æ•ÏŠ·‚·‚é‰ß’ö)v‚̉𖾁viŒ¤‹†•ª’SŽÒE“n•Ój

9. —ߘa4`7”N“x@‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)iˆê”ʁjj@u—L‹@‡¬‰»Šw‚ðŠî”Õ‚Æ‚µ‚½ƒiƒX‰ÈA•¨‚̃XƒeƒƒCƒhƒOƒŠƒRƒAƒ‹ƒJƒƒCƒh¶‡¬Œo˜H‚̉𖾁viŒ¤‹†‘ã•\ŽÒE“n•Ój

£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
‚»‚Ì‘¼
yŽÐ‰ï“I‚ÈŠˆ“®E‚»‚Ì‘¼z
“Œ–M‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È‹qˆõ‹³Žöi‚“cj
“Œ‹žˆã‰ÈŽ•‰È‘åŠw‹³—{•” —Ï—R¸ˆÏˆõi‚“cj
VƒGƒlƒ‹ƒM[ŽY‹Æ‹Zp‘‡ŠJ”­‹@\Ž–‘O‘–ʐR¸ˆÏˆõi‚“cj
“ú–{ŒvŽZ”—HŠw‰ï—Ž–(A“c)
Œ`‚̉Ȋw‰ï‰^‰cˆÏˆõiA“cj
“dŽqî•ñ’ʐMŠw‰ï¸“LjψõiA“cj
“ú–{‰Ô•²Šw‰ï•]‹cˆõEŽ–±iŠ²Ž–’·jE•‹y‘•ÒWˆÏˆõi•½’ˁj
 
£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö