‹³Žö m¶•¨ŠwŒ¤‹†Žºn
‚“c@kŽi

m•¨—ŠwŒ¤‹†Žºn
A“c@‹B
m‰»ŠwŒ¤‹†Žºn
¬‹{@¬‹`
y‹³Žö m¶•¨ŠwŒ¤‹†Žºn
•½’Ë@—Œb
m‰»ŠwŒ¤‹†Žºn
“n•Ó@•¶‘¾
uŽt

m•¨—ŠwŒ¤‹†Žºn

‰Á‰€@ŽŒÈ

‹qˆõ‹³Žö

m•¨—ŠwŒ¤‹†Žºn

Jun Kameoka
(Texas A&M University)

Œ¤‹†ŽÀK¶

m¶•¨ŠwŒ¤‹†Žºn

¬j —C‰î

”ñí‹Î•Žè

m¶•¨ŠwŒ¤‹†Žºn

¬‰– –¢˜Ð
¬j —C‰î
ꎓ¡ ŠG–ƒ

m•¨—ŠwŒ¤‹†Žºn

‘åX@—鉹

ŽÄú±@„

—é–Ø@‹Ú“Þ

’JŒû@—¤

m‰»ŠwŒ¤‹†Žºn
‰¶“c@ŠóŽuŽq
ˆÀˆä@«–ž
‹àŽq@’m‹`
’†‘º@˜a•F

Ž––±ˆõ

m¶•¨ŠwŒ¤‹†Žºn
•½‰Í@‘½Œb
m•¨—ŠwŒ¤‹†Žºn

ˆÀ“c@“µ
m‰»ŠwŒ¤‹†Žºn

‰““c@”ü’q‘ã

 

uÀiŒ¤‹†Žºj‚ÌŠT—v
m¶•¨ŠwŒ¤‹†Žºn
@1960”N4ŒŽAiŠw‰Û’ö‚ÌŠJu‚ɇ‚킹‚ÄÝ’u‚³‚ꂽ¶•¨Šw‹³Žº‚ª–{Œ¤‹†Žº‚Ì‹NŒ¹‚Å‚·B‚»‚ÌŒãA¶•¨Šw‹³Žº‚ÍA1998”N‚ɉð–UŠwuÀ‘æ‚PE¶•¨ŠwŒ¤‹†Žº‚ւƉü‘g‚³‚ê‚Ü‚µ‚½‚ªA2002”NAŽ©‘R‰ÈŠw‹³Žº‚ð\¬‚·‚é¶•¨ŠwŒ¤‹†Žº‚Ö‚ÆÄ‰ü‘g‚³‚êA¡“ú‚ÉŽŠ‚è‚Ü‚·B2022”NŒ»ÝAÝ—§‚©‚ç63”N–ڂƂȂè‚Ü‚·B
m•¨—ŠwŒ¤‹†Žºn

@–{Œ¤‹†Žº‚Ì‘Og‚Å‚ ‚镨—Šw‹³Žº‚ÍAº˜a35”N4ŒŽAiŠw‰Û’ö‚ÌŠJ݂ƂƂà‚É’a¶‚µA¶—ŠwuÀ‘æ1•¨—ŠwŒ¤‹†Žº(•½¬10`14”N)‚ðŒo‚ÄAŽ©‘R‰ÈŠw‹³ŽºE•¨—ŠwŒ¤‹†Žº‚ɂȂè‚Ü‚µ‚½B

m‰»ŠwŒ¤‹†Žºn

@–{Œ¤‹†Žº‚ÍAiŠw‰Û’ö‚ªŠJÝ‚³‚ꂽ1960”N‚©‚牻ŠwŒ¤‹†Žº‚Æ‚µ‚ĉ”NŽŸŠw¶‚ÉŠî‘b‰ÈŠw‚Æ‚µ‚Ẳ»Šw‚ð—L‹@‰»Šw‚╨—‰»Šw‚ð’†S‚É‹³ˆç‚µ‚Ă܂¢‚è‚Ü‚µ‚½B1998”N‚©‚ç‚̶‰»ŠwuÀ‘æ1E‰»ŠwŒ¤‹†Žº‚ÌŽžŠú‚ðŒo‚Ä2002”N‚©‚玩‘R‰ÈŠw‹³ŽºE‰»ŠwŒ¤‹†Žº‚Æ‚µ‚ÄŒ»Ý‚ÉŽŠ‚Á‚Ä‚¨‚è‚Ü‚·B

ˆãŠw‰È‹³ˆç‚ɂ‚¢‚Ä
m¶•¨ŠwŒ¤‹†Žºn
@–{Œ¤‹†Žº‚͈ãŠw‚ðŠw‚Ô‚½‚߂̊î‘b’mޝ‚ÆŠwK–@‚ÌK“¾‚ð–Ú“I‚Æ‚µ‚ăR[ƒX¶–½Šî‘b‰ÈŠw‚̶•¨Šw•ª–ì‚ð’S“–‚µ‚Ä‚¢‚Ü‚·Bu‹`“à—e‚ÍA×–E‚Ì\‘¢E‹@”\E‘BE•ª‰»Aˆâ“`Žq‚ƃ^ƒ“ƒpƒNŽ¿Aˆâ“`Œ»ÛAî•ñ“`’BA¶•¨‚Ìi‰»‚Æ‘½—l«AŽå—v‚ÈŒ¤‹†Žj“™‚Å‚·BŽÀK‚Å‚ÍA×–EE‘gDEŠíН‚ÌŒ`‘Ô‚Æ‹@”\‚âŠî‘b“I‚Ȉâ“`Žq‰ðÍ“™‚ɂ‚¢‚đ̌±“I‚ÉŠwK‚µ‚Ü‚·B
m•¨—ŠwŒ¤‹†Žºn

@ƒR[ƒXu¶–½Šî‘b‰ÈŠwv‚Ì•¨—Šw•ª–ì‚ð’S“–‚µ‚Ä‚¢‚Ü‚·B•¨—Šw‚͈ãŠw‚Ö‚Ì€”õ‹³ˆç‚Æ‹³—{‹³ˆç‚Ì—¼•û‚Ì–ðŠ„‚ð‰Ê‚½‚µ‚½‚¢‚Æ”O‚¶‚Ä‚¢‚Ü‚·BŽóŒ±‚ł̕¨—”ñŽóŒ±ŽÒ‚ðl—¶‚µ‚½‹³ˆç‚ðs‚Á‚Ä‚¢‚Ü‚·Bu‹`•ª–ì‚Íu—ÍŠwvu“dŽ¥‹CŠwvu„‘Ìvu’e«‘Ìvu”g“®vu—¬‘ÌvuŒ»‘㕨—Šwv‚Å‚·B

m‰»ŠwŒ¤‹†Žºn

@–{Œ¤‹†Žº‚̓R[ƒX¶–½Šî‘b‰ÈŠw‚Ì‚¤‚¿A‰»Šw•ª–ì‚Ìu‹`E‰‰KEŽÀK‚ð’S“–‚µ‚Ä‚¢‚Ü‚·BˆãŠw‚ðŠw‚Ô‚½‚߂̀”õ‹³ˆçE‹³—{‹³ˆç‚Æ‚µ‚Ă̗L‹@‰»Šw‚𕨗‰»Šw“I‚ÈŽ‹–ì‚É‚½‚Á‚ÄAŒ´ŽqE•ªŽq‚Ì\‘¢‚©‚ço”­‚µ‚Ķ–½Œ»Û‚Ì’†S‚Å‚ ‚é¶‘Ì•ªŽq‚Ì\‘¢‚â‹@”\‚Ü‚Å‚ð‹³‚¦‚Ä‚¢‚Ü‚·B

‘åŠw‰@‹³ˆçEŒ¤‹†‚ɂ‚¢‚Ä
m¶•¨ŠwŒ¤‹†Žºn
@‰º‹L‚ÌŒ¤‹†ƒe[ƒ}‚ÉŠÖ‚·‚鋤“¯Œ¤‹†‚Ȃǂð’Ê‚¶‚Ä‘¼‘åŠw‚ðŠÜ‚Þ‘åŠw‰@¶E‘²‹ÆŒ¤‹†¶‚Ì‹³ˆç‚ÉŠÖ‚í‚Á‚Ä‚¢‚Ü‚·B
£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
‹³ˆç’S“–
u‹`‰È–Ú–¼Ì‚Æ‘ÎÛŠw”N
m¶•¨ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg×–E‚̶•¨ŠwiˆãŠw‰È1”Nj

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒgŽ©‘R‰ÈŠw“ü–剉Ki¶•¨ŒnjiˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~@ŠCŽY¶•¨‚Ì—ÕŠCŽÀKviˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~@¶–½‰ÈŠwŒ¤‹†‚ւ̵‘ÒviˆãŠw‰È1”Nj

ƒR[ƒXŒ¤‹†Žº”z‘®iˆãŠw‰È3”Nj

¶•¨ŠwiŠÅŒìŠw‰È1”Nj

m•¨—ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒgu¶–½‚Ì•¨—ŠwviˆãŠw‰È1”Nj

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒguŽ©‘R‰ÈŠw“ü–剉Ki•¨—ŒnjviˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~ ¶–½‰ÈŠwƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ““ü–åviˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~ —ÊŽq—ÍŠw“ü–åviˆãŠw‰È1”Nj

ƒR[ƒX—Õ°‰uŠwEEBMIEƒ†ƒjƒbƒguƒRƒ“ƒsƒ…[ƒ^‰‰KƒAƒhƒoƒ“ƒXviˆãŠw‰È1”Nj

ƒR[ƒXŒ¤‹†Žº”z‘®iˆãŠw‰È3”Nj

•¨—ŠwiŠÅŒìŠw‰È‚P”Nj

m‰»ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg¶‘Ì•ªŽq‚̉»ŠwiˆãŠw‰È1”Nj

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒgŽ©‘R‰ÈŠw“ü–剉Ki‰»ŠwŒnjiˆãŠw‰È1”Nj

ƒR[ƒX‘‡‹³ˆçEƒ†ƒjƒbƒgu‹³—{ƒ[ƒ~@—L‹@‡¬‰»Šw“ü–åviˆãŠw‰È1”Nj

ƒR[ƒXŒ¤‹†Žº”z‘®iˆãŠw‰È‚R”Nj

‰»ŠwiŠÅŒìŠw‰È‚P”Nj

ŽÀK‰È–Ú–¼Ì‚Æ‘ÎÛŠw”N
m¶•¨ŠwŒ¤‹†Žºn
ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg¶–½Šî‘b‰ÈŠwŽÀKi¶•¨ŒnjiˆãŠw‰È1”Nj
¶•¨ŠwŽÀŒ±iŠÅŒìŠw‰È1”Nj
m•¨—ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg¶–½Šî‘b‰ÈŠwŽÀKi•¨—ŒnjiˆãŠw‰È1”Nj
•¨—ŠwŽÀŒ±iŠÅŒìŠw‰È1”Nj

m‰»ŠwŒ¤‹†Žºn

ƒR[ƒX¶–½Šî‘b‰ÈŠwEƒ†ƒjƒbƒg¶–½Šî‘b‰ÈŠwŽÀKi‰»ŠwŒnjiˆãŠw‰È1”Nj
‰»ŠwŽÀŒ±iŠÅŒìŠw‰È‚P”Nj

£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
Žå‚ÈŒ¤‹†ƒe[ƒ}
ŽÀŒ±Œ¤‹†
m¶•¨ŠwŒ¤‹†Žºn

ƒ|ƒŠƒ†ƒrƒLƒ`ƒ“½‚Ì’è—ʂɊî‚­ƒvƒƒeƒIƒXƒ^ƒV•]‰¿Œn‚ÌŒŸ“¢

d‹à‘®Œn‰»Šw•¨Ž¿‚É‚æ‚é×–E“Å«‚Ì”­Œ»‹@\iûü“cj

^Šj×–E‚É’~Ï‚·‚éˆÙíƒ^ƒ“ƒpƒNŽ¿‚ÉŠÖ‚·‚錤‹†iûü“cj

ŽíŽqA•¨‚̉ԕ²Œ`¬‚ÉŠÖ‚·‚錤‹†i—YŒ´×–E‚ª×–E“à×–E‰»‚·‚é‹@\ji•½’Ëj

‰Ô•²Œ`¬ˆÙí‚ðŽ¦‚·•ψّ̂ɂ¨‚¯‚é‰Ô•²“àƒIƒ‹ƒKƒlƒ‰‚ÌŒ`‘Ô‰ðÍi•½’Ëj

m•¨—ŠwŒ¤‹†Žºn
(A“c)
E ƒ‰ƒ“ƒ_ƒ€ƒ|[ƒ‰ƒXƒtƒHƒgƒjƒbƒNƒ‚ƒfƒ‹‚É‚æ‚é’¹‚Ì\‘¢F‚̉ð–¾
E ƒAƒ_ƒvƒeƒBƒuƒtƒHƒmƒjƒbƒNƒŒƒ“ƒY‚ð—p‚¢‚½’´‰¹”g‚É‚æ‚é”ñNP“Iƒsƒ“ƒ|ƒCƒ“ƒg”]“àŽhŒƒ‚ÌŒ¤‹†
E ƒtƒHƒgƒjƒbƒNŒ‹»‚É‚¨‚¯‚éŒõ‚ÆŠiŽqU“®‚Ì‘ŠŒÝì—p‚É‚æ‚éŒõ‘•
E ƒ‰ƒ“ƒ_ƒ€ƒŒ[ƒU[‚É‚¨‚¯‚é’á臒l”­Uƒ‚[ƒh‚̉ðÍ
E ƒ|ƒŠƒXƒ`ƒŒƒ“•ïŠÜƒxƒVƒNƒ‹‚Ì•ª—ô–@‘¥‚Ì—˜_
i‰Á‰€j
‘Š“]ˆÚE—ÕŠEŒ»ÛE‘ŠŒÝì—p‚µ‚Ä‚¢‚鑽‘ÌŒnEƒRƒ“ƒsƒ…[ƒ^ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“
ikameokaj
E •ªŽqˆóü“d‹É‚ð—p‚¢‚½¶‘Ì•ªŽqƒZƒ“ƒT[‚ÌŠJ”­
E ’Pˆê•ªŽqŒŸ’m‚Ì‚ª‚ñŒ¤‹†‚ւ̉ž—p
E ƒ\ƒtƒgƒAƒNƒ`ƒ…ƒG[ƒ^[‚ð—p‚¢‚½ŽèpŠí‹ï‚ÌŠJ”­
m‰»ŠwŒ¤‹†Žºn

i¬‹{j
—ÓŒõ«‹à‘®ö‘̂̕ªŽq”z—ñ‚Æ”­Œõ§Œä
π-‹¤–ð§Œä‚É‚æ‚é—L‹@•ªŽq‚̌ő̔­Œõ
‘JˆÚ‹à‘®ö‘̂̓®“I‹““®‚ÉŠÖ‚·‚錤‹†
‘JˆÚ‹à‘®ö‘̂ɂ¨‚¯‚éˆÊ’u‘I‘ð“I‹à‘®|…‘f‘ŠŒÝì—p

i“n•Ój
¶•¨Šˆ«—L‹@‰»‡•¨‚̇¬‚¨‚æ‚Ñ\‘¢Œˆ’è
¶•¨Šˆ«“V‘R•¨‚̶‡¬Œo˜H‚̉ð–¾

£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
Žå‚È‹ÆÑ
m¶•¨ŠwŒ¤‹†Žºn

qûü“cr

  1. Takada K, Nasu H, Hibi N, Tsukada Y, Ohkawa K, Fujimuro M, Sawada H, Yokosawa H. Immunoassay for the quantification of intracellular multiubiquitin chains. Eur J Biochem 1995; 233: 42-7.
  2. Takada K, Hibi N, Tsukada Y, Shibasaki T, Ohkawa K. Ability of ubiquitin radioimmunoassay to discriminate between monoubiquitin and multi-ubiquitin chains. Biochimi Biophys Acta 1996; 1290: 282-8.
  3. Takada K, Nasu H, Hibi N, Tsukada Y, Shibasaki T, Fujise K, Fujimuro M, Sawada H, Yokosawa H, Ohkawa K. Serum concentrations of free ubiquitin and multi-ubiquitin chains. Clin Chem 1997; 43: 1188-95.
  4. Takada K, Hirakawa T, Yokosawa H, Okawa Y, Taguchi H, Ohkawa K. Isolation of ubiquitin-E2 (ubiquitin-conjugating enzyme) complexes from erythroleukemia cells using immunoaffinity techniques. Biochem J 2001; 356: 199-206.
  5. Shimada Y, Fukuda T, Aoki K, Yukawa T, Iwamuro S, Ohkawa K, Takada K. A protocol for immunoaffinity separation of the accumulated ubiquitin-protein conjugates solubilized with sodium dodecyl sulfate. Anal Biochem 2008; 377: 77-82.
  6. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010; 465: 346-9.

q•½’Ër

  1. Hiratsuka R, Terasaka O. Pollen tube reuses intracellular components of nucellar cells undergoing programmed cell death in Pinus densiflora. Protoplasma 2011; 248: 339-51.
  2. •½’Ë—ŒbAŽ›âŽ¡DƒXƒM‰Ô•²‚É‚¨‚¯‚éƒyƒNƒ`ƒ“•ª‰ðy‘f(Cry j 2)‚̉ԕ²ŠÇL’·‚ɉʂ½‚·–ðŠ„@“ú–{‰Ô•²Šw‰ï‰ïŽ@58(2):51-9i2012j
  3. •½’Ë—ŒbAŽ›âŽ¡D—‡ŽqA•¨‰Ô•²—±‚É‚¨‚¯‚é‘O—t‘Ì×–E‚̃vƒ‰ƒOƒ‰ƒ€×–EŽ€‡UDŒ´Œ`Ž¿˜A—‚Ì•sŒ`¬‚Æ×–E•Ç”ìŒú‚ÌŠÖ—^D“ú–{‰Ô•²Šw‰ï‰ïŽ@59(1):3-10i2013j
  4. ¬‰–ŠC•½E•½’Ë—ŒbDƒgƒŠƒIƒŒƒCƒ“Ž_ƒ\ƒ‹ƒrƒ^ƒ““ûÜiƒpƒ‹ƒJƒbƒgj‚ð—p‚¢‚½ƒXƒM‰Ô•²Œ`¬—}§‹Zp‚ÌŠm—§DƒAƒŒƒ‹ƒM[‚Ì—Õ°@36(13)@P67-9(2016)
  5. Kanno T, Adachi Y, Ohashi-Doi K, Matsuhara H, Hiratsuka R, Ishibashi K, Yamanaka D, Ohno N. Latent 1,3-ƒÀ-D-glucan acts as an adjuvant for allergen-specific IgE production induced by Japanese cedar pollen exposure. Allergol Int 2021; 70(1) 105-13.
  6. Hiratsuka R, Terasaka O. Dynamics of Cell Membrane and Cell Wall Development during Generative Cell Engulfment by the Pollen Tube Cell in Liriope muscari. Cytologia 2021; 86:225-33.
  7. •½’Ë—ŒbC·ˆêLŽqD‰Ô•²‚Ì‘–¸“dŽqŒ°”÷‹¾ŠÏŽ@‚É‚¨‚¯‚éƒiƒmƒX[ƒc–@‚̉ž—pD“ú–{‰Ô•²Šw‰ï‰ïŽ 2022;67i‚QjF51|5D
m•¨—ŠwŒ¤‹†Žºn

i’˜‘j

1D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̳‰ð‚Ɖðà(‘æ39‰ñ). “Œ‹ž. ŠÛ‘P. (2013)

2D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̳‰ð‚Ɖðà(‘æ40‰ñ). “Œ‹ž. ŠÛ‘P. (2014)

3D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̳‰ð‚Ɖðà(‘æ41‰ñ). “Œ‹ž. ŠÛ‘P. (2015)

4D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̳‰ð‚Ɖðà(‘æ42‰ñ). “Œ‹ž. ŠÛ‘P. (2016)

5D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̳‰ð‚Ɖðà(‘æ43‰ñ). “Œ‹ž. ŠÛ‘P. (2017)

6D‰Á‰€ŽŒÈ‹¤’˜. ŠÂ‹«Œv—ÊŽm‘‰ÆŽŽŒ±–â‘è‚̳‰ð‚Ɖðà(‘æ44‰ñ). “Œ‹ž. ŠÛ‘P. (2018)

7D‰Ä–Ú—Y•½DA“c ‹B’˜DŠî‘b•¨—ŠwƒVƒŠ[ƒY‚P‚SDŒvŽZ•¨—IID“Œ‹žD’©‘q‘“X, (2002)

i˜_•¶j

qA“cr
1. Tsuyoshi Ueta and Yuu Miyagawa, Local Gauge Finite Element Method for Electron Waves in Magnetic Fields, Phys. Rev. E, Vol. 86, (2012) 026707, DOI:10.1103/PhysRevE.86.026707.
2. T. Ueta and T. Hioki, Gor'kov Theory with Exact Green Function in Magnetic Fields, Journal of Superconductivity and Novel Magnetism, Vol. 26, Issue 5, (2013) pp.1921-1926, DOI:10.1007/s10948-012-1872-y.
3. Garuda Fujii, Hayato Watanabe, Takayuki Yamada, Tsuyoshi Ueta and Mamoru Mizuno, Level set based topology optimization for optical cloaks, Appl. Phys. Lett. 102 (2013) 251106, doi: 10.1063/1.4812471.
4. Tsuyoshi Ueta, The dynamic Casimir effect within a vibrating metal photonic crystal, Applied Physics A, , Applied Physics A, vol.116, Issue 3 (2014), pp.863-871, DOI 10.1007/s00339-014-8469-1.
5. Tsuyoshi Ueta, Garuda Fujii, Gen Morimoto, Kiyoshi Miyamoto, Akinori Kosaku, Takeo Kuriyama and Takahiko Hariyama, Numerical study on the structural color of blue birds by a disordered porous photonic crystal model, Europhysics Lett., vol. 107, no. 3 (2014) 34004.
6. Garuda Fujii, Tsuyoshi Ueta, Mamoru Mizuno and Masayuki Nakamura, Topology optimized multiple-disk resonators obtained using level set expression incorporating surface effects, Optics Express, vol. 23, Issue 9, (2015) pp.11312-11326.
7. Garuda Fujii and Tsuyoshi Ueta, Topology-optimized carpet cloaks based on a level-set boundary expression, Phys. Rev. E, vol. 94 (2016) 043301.
8. ’†“c_“ñAA“c ‹BA‰H¶M‹`A”–ØGKAŽOX‹³—YA–î‰iŸ•F, ˆÝ‘S“EŒã‹ó’°ƒpƒEƒ`ÄŒšE•¬–呤ˆÝØœŒãÄŒš‚ðŽæ‚èŠª‚­Œ»ó‚ÆŠO‰È¶—ŠwE¶‘Ì—ÍŠw‚©‚ç‚ÌŒŸØ, Žèp, vol. 71, no. 8 (2017) pp.1129-1139.
9. Tsuyoshi Ueta, Wave functions and phase shifts of amplified modes within a vibrating metallic photonic crystal, Procedia Engineering, vol. 216C, (2018) pp.152-167.
10. Tsuyoshi Ueta, Resonance with Virtual Bound States and Amplification within a Vibrating 1D Photonic Crystal, Proceedings of the 12th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics - Metamaterials 2018, IEEE Xplore Conference ID: 43757X, 978-1-5386-4702-8/18/$31.00, pp.407-409. DOI: 10.1109/ Meta Materials. 2018.8534077.
11. Hibiki Itoga, Ryota Morikawa, Tsuyoshi Ueta, Takeshi Miyakawa, Yuno Natsume and Masako Takasu, Effect of particles with repulsive interactions enclosed in both rigid spherical shells and flexible fluid vesicles studied by Monte Carlo simulation, Phys. Rev. E. vol. 99, (2019) 042418.
12. T. Ueta: gAmplification of Light within a One-dimensional Photonic Crystal with Harmonically Oscillating Dielectric Constant of Each Layer,h 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), New York City, NY, 2020, pp. 015-017, doi: 10.1109/Metamaterials49557.2020.9285110.
13. Tsuyoshi Ueta, Garuda Fujii and Gen Morimoto:gFull-model Finite-element Analysis for Structural Color of Tarsiger cyanurusfs Feather Barbsh, Forma, Vol. 35 (No. 1), (2020) pp. 21-26, doi:10.5047/forma.2020.005.
14. A“c ‹B:gŒo“ªŠW“_óŽU—‘Ì”z—ñƒŒƒ“ƒY‚Ì“ªŠW“à‰¹êÅ“K‰»h ŒvŽZ”—HŠw˜_•¶W 21, (2021), 11-211218, pp.7-12.

q‰Á‰€r
1. Y.Ozeki, K.Kasono. Nonequilibrium relaxation analysis for first-order phase transitions. Physica A.2003;321:271-279

2. Ono, K.Kasono. Investigation on Liquid Crystal Phases of Polarized Rod-like Molecules by NumericalSimulations. Ferroelectrics. 2005;315:197-203

qKameokar
1. Po-Jung Huang, Chao-Kai Chou, Chun-Te Chen, Hirohito Yamaguchi, Jian Qu, Anastasia Muliana, Mien-Chie Hung and Jun Kameoka, Pneumatically Actuated Soft Micromold Device for Fabricating Collagen and Matrigel Microparticles, SOFT ROBOTICS (2017) DOI: 10.1089/soro.2016.0073.

2. Jun Kameoka, Onder Dincel, Tsuyoshi Ueta, Acoustic Driven Microbubble Motor Device, Sensors & Actuators: A. Physical, 295, (2019) pp.343-347, https://doi.org/10.1016/j.sna.2019.05.013

3. Zheyuan Chen, Christopher Wright, Onder Dincel, Ting-Yen Chi and Jun Kameoka, A Low-Cost Paper Glucose Sensor with Molecularly Imprinted Polyaniline Electrode, Sensors 2020, 20, 1098, doi:10.3390/s20041098.

m‰»ŠwŒ¤‹†Žºn
i¬‹{¬‹`j
1. Komiya, N.; Okada, M.; Fukumoto, K.; Jomori, D.; Naota, T. Highly Phosphorescent Crystals of Vaulted trans-Bis(salicylaldiminato)platinum(II) Complexes, J. Am. Chem. Soc. 2011, 133, 6493-6496.

2. Komiya, N.; Muraoka, T.; Iida, M.; Miyanaga, M.; Takahashi, K.; Naota, T. Ultrasound-Induced Emission Enhancement Based on Structure-Dependent Homo- and Heterochiral Aggregations of Chiral Binuclear Platinum Complexes, J. Am. Chem. Soc. 2011, 133, 16054-16061.

3. Komiya, N.; Okada, M.; Fukumoto, K.; Kaneta, K.; Yoshida, A.; Naota, T. Vaulted trans-Bis(salicylaldiminato)platinum(II) Crystals: Heat-Resistant, Chromatically Sensitive Platforms for Solid-State Phosphorescent at Ambient Temperature, Chem. Eur. J. 2013, 19, 4798-4811.

4. Komiya, N.; Itami, N.; Naota, T. Solid-State Phosphorescent of trans-Bis(salicylaldiminato)Pt(II) Complexes Bearing Long Alkyl Chains: Morphology Control towards Intense Emission, Chem. Eur. J. 2013, 19, 9497-9505.

5. Naito, M.; Souda, H.; Koori, H.; Komiya, N.; Naota, T. Binuclear trans-Bis(β-iminoaryloxy)palladium(II) Complexes Doubly Linked with Pentamethylene Spacers: Structure-dependent Flapping Motion and Heterochiral Association Behavior of the Clothespin-shaped Molecules, Chem. Eur. J. 2014, 20, 6991-7000.

6. Komiya, N.; Okada, M.; Le, N. H.-T.; Kawamorita, S.; Naota, T. Linker-Dependent Chromogenic Control of the Emission of Polymethylene-Vaulted trans-Bis(salicylaldiminato)platinumi‡UjComplexes, J. Lumin. 2015, 161, 363-367.

7. Komiya, N.; Okada, M.; Inoue, R.; Kawamorita, S.; Naota, T. Variations in the Emission of Polymethylene-Vaulted trans-Bis(salicylaldiminato)platinum(II) Complexes Incorporating Methoxy Functionalities with Linkage Length and Substitution Position, Polyhedron 2015, 98, 75-83.

8. Naito, M.; Inoue, R.; Iida, M.; Kuwajima, Y.; Kawamorita, S.; Komiya, N.; Naota, T. Control of Metal Array Based on Heterometallic Masquerade in Heterochiral Aggregation of Chiral Clothespin-shaped Complexes, Chem. Eur. J. 2015, 21, 12927-12939.

9. Komiya, N.; Nakajima, T.; Hotta, M.; Maeda, T.; Matsuoka, T.; Kawamorita, S.; Naota, T. Kinetic Studies of the Chirality Inversion of Salicylaldiminato Ruthenium Using Racemic η6-p-Cymene Complexes as a Mechanistic Probe, Eur. J. Inorg. Chem. 2016, 3148-3156..

10. Anzai, K.; Kawamorita, S.; Komiya, N.; Naota, T. Convenient Spectroscopic Method for Quantitative Analysis of Trace Hydrochloric Acid in Chlorinated Organic Solvents Using 2-(1-Adamantylimino)methyl-1H-pyrrole as a Robust Indicator, Chem. Lett. 2017, 46, 672-675.

11. Komiya, N.; Yoshida, A.; Zhang, D.; Inoue, R.; Kawamorita, S.; Naota, T. Fluorescent Crystals of Zwitterionic Imidazolium Pyridinolates: A Rational Molecular Design for Intense Solid-State Emission Based on the Twisting Control of Proemissive N-Aryl Imidazolium Platforms, Eur. J. Org. Chem. 2017, 5044-5054.

12. Maeda, T.; Kuwajima, Y.; Akita, T.; Imai, Y.; Komiya, N; Uchida, Y.; Naota, T. Helicity Control of Supramolecular Gel Fiber Consisting of Achiral Ni(II) Complex in Chiral Nematic Solvent, Chem. Eur. J. 2018, 24, 12546-12554.

13. Komiya, N.; Hosokawa, T.; Adachi, J.; Inoue, R.; Kawamorita, S.; Naota, T. Regiospecific Remote Pt-H Interactions in Oligomethylene-Vaulted (N^C^N)-Pincer Pt(II) Complexes, Eur. J. Inorg. Chem. 2018, 4771-4778.

14. Ngoc Ha-Thu, Le.; Inoue, R.; Kawamorita, S.; Komiya, N.; Naota, T. Phosphorescent Molecules That Resist Concentration Quenching in the Solution State: Concentration-Driven Emission Enhancement of Vaulted trans-Bis[2-(iminomethyl)imidazolato]platinum(Ⅱ) Complexes, Inorg. Chem. 2019, 58, 9076-9084.

15. Komiya, N.; Ikeshita, M.; Tosaki, K.; Sato, A.; Itami, N.; Naota, T. Catalytic Enantioselective Rotation of Watermill-Shaped Dinuclear Pd Complexes, Eur. J. Inorg. Chem. 2021, 1929-1940.

16. Adachi, J.; Naito M.; Sugiura, S.; Lem N. H.-T.; Nishimura, S.; Huang, S.; Suzuki, S.; Kawamorita, S,; Komiya, N.; Hill, J. P.; Ariga, K.; Naota, T.; Mori, T. Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology, Bull. Chem. Soc. Jpn. 2022, 95, 889-897.

i“n•Ó•¶‘¾j
1. Kamiyama, A.; Nakajima, M.; Han, L.; Wada, K.; Mizutani, M.; Tabuchi, Y.; Kojima-Yuasa, A.; Matsui-Yuasa, I.; Suzuki, H.; Fukuyama, K.; Watanabe, B.; Hiratake, J. Phosphonate-based irreversible inhibitors of human ƒÁ-glutamyl transpeptidase (GGT). GGsTop is a non-toxic and highly selective inhibitor with critical electrostatic interaction with an active-site residue Lys562 for enhanced inhibitory activity. Bioorg. Med. Chem. 2016, 24, 5340-5352.

2. Watanabe, B.; Yamamoto, S.; Yokoi, T.; Sugiura, A.; Horoiwa, S.; Aoki, T.; Miyagawa, H.; Nakagawa, Y. Brassinolide-like activity of castasterone analogs with varied side chains against rice lamina inclination. Bioorg. Med. Chem. 2017, 25, 4566-4578.

3. Tokunaga, T.; Watanabe, B.; Sato, S.; Kawamoto, J.; Kurihara, T. Synthesis and functional assessment of a novel fatty acid probe, ƒÖ-ethynyl eicosapentaenoic acid analog, to analyze the in vivo behavior of eicosapentaenoic acid. Bioconjug. Chem. 2017, 28, 2077-2085.

4. Watanabe, B.; Kirikae, H.; Koeduka, T.; Takeuchi, Y.; Asai, T.; Naito, Y.; Tokuoka, H.; Horoiwa, S.; Nakagawa, Y.; Shimizu, B.; Mizutani, M.; Hiratake, J. Synthesis and inhibitory activity of mechanism-based 4-coumaroyl-CoA ligase inhibitors. Bioorg. Med. Chem. 2018; 26: 2466-2474.

5. Oshikiri, H; Watanabe, B.; Yamamoto, H.; Yazaki, K.; Takanashi, K. Two BAHD acyltransferases catalyze the last step in the shikonin/alkannin biosynthetic pathway. Plant Physiol. 2020, 184, 753-761.

6. Maruoka, N.; Watanabe, B.; Ando, D.; Miyashita, M.; Kurihara, T.; Hokazono, H. Effects of a pyroglutamyl pentapeptide isolated from fermented barley extract on atopic dermatitis-like skin lesions in hairless mouse. Biosci. Biotechnol. Biochem. 2020, 84, 1696-1705.

7. Akiyama, R.; Watanabe, B.; Nakayasu, M.; Lee, H. J.; Kato, J.; Umemoto, N.; Muranaka, T.; Saito, K.; Sugimoto, Y.; Mizutani, M. The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nat. Commun. 2021, 12, 1300.

8. Watanabe, B.; Makino, K.; Mizutani, M.; Takaya, H. Synthesis and structural confirmation of calibagenin and saxosterol. Tetrahedron, 2021, 91, 132194.

9. Watanabe, B.; Nishitani, S.; Koeduka, T. Synthesis of deuterium-labeled cinnamic acids: Understanding the volatile benzenoid pathway in the flowers of the Japanese loquat Eriobotrya japonica. J. Label. Compd. Radiopharm. 2021, 64, 403-416.

10. Ishida, T.; Watanabe, B.; Mashiguchi, K.; Yamaguchi, S. Synthesis and structure-activity relationship of 16,17-modified gibberellin derivatives. Phytochemistry Lett. 2022, 49, 162-166.

£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
Žå‚È‹£‘ˆ“IŒ¤‹†”ï
m¶•¨ŠwŒ¤‹†Žºn

‰ÈŠwŒ¤‹†”ï•â•‹à

1. •½¬16`18”N“x Šî”ÕŒ¤‹†(B)uŒ´Žn“IˆÛŠÇ‘©A•¨‚Ì”z‹ô‘Ì‚Ìi‰»‚Æ‘½—l«v(Œ¤‹†•ª’SŽÒE•½’Ë)

2. •½¬19`21”N“x ’§í“I–G‰èŒ¤‹†u—‡ŽqA•¨‰Ô•²ŠÇ‚Ì‘½—l«‚Æ×–EŠÔƒRƒ~ƒ…ƒjƒP[ƒVƒ‡ƒ“v(Œ¤‹†‘ã•\ŽÒE•½’Ë)

3. •½¬22`24”N“x Šî”ÕŒ¤‹†(C)u^Šj¶•¨‚ª—L‚·‚éˆÙíƒ^ƒ“ƒpƒNŽ¿Ž¯•Ê‹@\‚ÉŠî‚­—LŠQ•¨Ž¿•]‰¿Œn‚ÌŠm—§viŒ¤‹†‘ã•\ŽÒE‚“cj

4. •½¬22`24”N“x Šî”ÕŒ¤‹†(A)uƒ}ƒEƒX‚ðƒ‚ƒfƒ‹‚Æ‚µ‚½¸_޾г‚ւ̃Aƒvƒ[ƒ`viŒ¤‹†•ª’SŽÒE‚“cj

5. •½¬25`27”N“x Šî”ÕŒ¤‹†(B)u—{ˆçs“®‚Ì•ªŽqŠî”Õ`Usp46•ψك}ƒEƒX‚ðŠˆ—p‚µ‚Ä`viŒ¤‹†•ª’SŽÒE‚“cj

6. •½¬25`28”N“x Šî”ÕŒ¤‹†(C)u—LŠQd‹à‘®‚̓ū”­Œ»‚ÉŠÖ—^‚·‚é×–E“àƒ^ƒ“ƒpƒN‹ÃW‘̂̌¤‹†viŒ¤‹†‘ã•\ŽÒE‚“cj

7. •½¬25`27”N“x Šî”ÕŒ¤‹†(C)uˆÀ‘S«‚Ì‚‚¢ŠE–ÊŠˆ«Ü‚ð—p‚¢‚½ƒXƒM‰Ô•²Œ`¬—}§‹Zp‚ÌŠm—§v(Œ¤‹†•ª’SŽÒE•½’Ë)

8. •½¬28`30”N“x Šî”ÕŒ¤‹†(C)uH“¹Šà‚É‚¨‚¯‚éSUMO“ÁˆÙ“IƒvƒƒeƒA[ƒ[‚̈Ӌ`‚Æ”­Œ»—}§‚É‚æ‚éRŠàì—p‚̉ðÍviŒ¤‹†•ª’SŽÒE‚“cj

9.—ߘaŒ³`3”N“x Šî”ÕŒ¤‹†(C)uƒ|ƒŠƒ†ƒrƒLƒ`ƒ“½ŠeŒ^‚Ì’è—ʂɊî‚­‰Á—¾Š³‚Ì•a‘Ô‰ðÍv(Œ¤‹†‘ã•\ŽÒE‚“cj

m•¨—ŠwŒ¤‹†Žºn
1. •½¬23`25”N“x‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)iˆê”Êjju—LŒÀ—v‘f–@‚É‚æ‚éƒ|[ƒ‰ƒXEƒRƒƒCƒhƒtƒHƒgƒjƒbƒN\‘¢‚Ì“Á«‰ðÍviŒ¤‹†‘ã•\ŽÒEA“cj

2. •½¬30`—ߘa4”N“x‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)iˆê”ÊjjuƒAƒ_ƒvƒeƒBƒuEƒtƒHƒmƒjƒbƒNEƒƒ^\‘¢—p‚¢‚½’´‰¹”gŽû‘©ƒVƒXƒeƒ€‚ÌŠî‘bÝŒvviŒ¤‹†‘ã•\ŽÒEA“cj

3. •½¬31`—ߘa5”N“x‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(A)iˆê”Êjju‹ÇŠ‹¤UŒ»Û‚ðŽæ‚è“ü‚ꂽ’e«”g“®E“dŽ¥ƒƒ^ƒ}ƒeƒŠƒAƒ‹\‘¢‚Ì‘n¬viŒ¤‹†•ª’SŽÒEA“cj

4. —ߘa4`—ߘa6”N“x‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)iˆê”Êjju“KŽž“IÅ“_‰Â•ÏŒo“ªŠW“_óŽU—‘̉¹‹¿ƒŒƒ“ƒY‚ÌŠî‘bÝŒvviŒ¤‹†‘ã•\ŽÒEA“cj
m‰»ŠwŒ¤‹†Žºn

1. •½¬21`23”N“x ‰ÈŠwŒ¤‹†”ï•â•‹àiŽáŽèŒ¤‹†(B)ju‹à‘®‚Ì‹óŠÔ”z—ñ§Œä‚ðŽwŒü‚µ‚½’´‰¹”g‰ž“š«ƒQƒ‹‰»”½‰žviŒ¤‹†‘ã•\ŽÒE¬‹{j

2. •½¬24`26”N“x ‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)juŒÅ‘Ìó‘Ô‚Å‹­‚¢—ÓŒõ«”­Œõ‚ðŽ¦‚·‚RŽŸŒ³“nŠÂŒ^”’‹àö‘̂̑n¬viŒ¤‹†‘ã•\ŽÒE¬‹{j

3.•½¬25”N“x@“Æ—§s­–@l‰ÈŠw‹ZpU‹»‹@\@Œ¤‹†¬‰ÊÅ“K“WŠJŽx‰‡ƒvƒƒOƒ‰ƒ€iA-STEPj’Tõƒ^ƒCƒv@u”§‚ÌuŽáX‚µ‚³v‚ð‘i‚·‚éV‹K¬•ªŽq‰»‡•¨‚Ì‘n»viŒ¤‹†‘ã•\ŽÒE“n•Ój

4. •½¬25`26”N“x@‰ÈŠwŒ¤‹†”ï•â•‹àiŽáŽèŒ¤‹†(B)j@u—L‹@‰»Šw‚ðŠî”Õ‚Æ‚µ‚½ŒÃ׋ۖŒŽ‰Ž¿•ªŽq‚̶‡¬‚¨‚æ‚Ñ“®‘Ԃ̉ð–¾viŒ¤‹†‘ã•\ŽÒE“n•Ój

5. •½¬27`28”N“x@‰ÈŠwŒ¤‹†”ï•â•‹àiŽáŽèŒ¤‹†(B)j@uγ-ƒOƒ‹ƒ^ƒ~ƒ‹ƒgƒ‰ƒ“ƒXƒyƒvƒ`ƒ_[ƒ[“ÁˆÙ“I•ªŽqƒvƒ[ƒu‚̇¬‚Æ‚ª‚ñ–Ɖu—Ö@‚ւ̉ž—pviŒ¤‹†‘ã•\ŽÒE“n•Ój

6.•½¬27`29”N“x ‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)ju—ÓŒõ«”’‹àö‘̂ɂ¨‚¯‚é”zˆÊ•½–ʂ̂„|π‹¤–ð•ω»‚ÉŠî‚­”­Œõ§ŒäviŒ¤‹†‘ã•\ŽÒE¬‹{j

7. —ߘaŒ³`4”N“x ‰ÈŠwŒ¤‹†”ï•â•‹à (Šî”ÕŒ¤‹†(C))uŽŸ¢‘ã”­Œõ‘fŽq‚Ì‚½‚߂̌őÌÂF—ÓŒõ«‚ð—L‚·‚é“nŠÂŒ^”’‹àö‘̂̊J”­viŒ¤‹†‘ã•\ŽÒE¬‹{j

8. •½¬31`—ߘa4”N“x@‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(B)iˆê”Êjj@uA•¨uškŠo(Šö”­«‰»‡•¨‚ð”Fޝ‚µ¶‘̃VƒOƒiƒ‹‚ւƕϊ·‚·‚é‰ß’ö)v‚̉ð–¾viŒ¤‹†•ª’SŽÒE“n•Ój

9. —ߘa4`7”N“x@‰ÈŠwŒ¤‹†”ï•â•‹àiŠî”ÕŒ¤‹†(C)iˆê”Êjj@u—L‹@‡¬‰»Šw‚ðŠî”Õ‚Æ‚µ‚½ƒiƒX‰ÈA•¨‚̃XƒeƒƒCƒhƒOƒŠƒRƒAƒ‹ƒJƒƒCƒh¶‡¬Œo˜H‚̉ð–¾viŒ¤‹†‘ã•\ŽÒE“n•Ój

£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö
‚»‚Ì‘¼
yŽÐ‰ï“I‚ÈŠˆ“®E‚»‚Ì‘¼z
“Œ–M‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È‹qˆõ‹³Žöi‚“cj
“Œ‹žˆã‰ÈŽ•‰È‘åŠw‹³—{•” —Ï—R¸ˆÏˆõi‚“cj
VƒGƒlƒ‹ƒM[ŽY‹Æ‹Zp‘‡ŠJ”­‹@\Ž–‘O‘–ÊR¸ˆÏˆõi‚“cj
“ú–{ŒvŽZ”—HŠw‰ï—Ž–(A“c)
Œ`‚̉Ȋw‰ï‰^‰cˆÏˆõiA“cj
“dŽqî•ñ’ÊMŠw‰ï¸“LjψõiA“cj
“ú–{‰Ô•²Šw‰ï•]‹cˆõEŽ–±iвޖ’·jE•‹y‘•ÒWˆÏˆõi•½’Ëj
 
£ ‚±‚̃y[ƒW‚̃gƒbƒv‚Ö